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Abstract-A study is made of the natural convection of cold water between two horizontal concentric 
cylinders with constant surface temperatures. The governing equations are solved by the perturbation 
method and the solutions are expressed as power series of the nonlinear Rayleigh number. The flow patterns 
and heat transfer rates are presented in terms of the radius ratio R, the nonlinear Rayleigh number Ra, and 
the inversion parameter y which essentially determines the size and effects of the additional convection cells 
that arise from the inversion ofdensity of water at 4°C within the cavity. Good agreement is obtained with the 

existing numerical and experimental results. 

e,, e4, 

Nu, 

Pt 
Pr, 
r, 4, 
R, 
Ra, 
Ra,, 

Ran, 
T, 
Ii, v, 

V, 

NOMENCLATURE Superscript 

unit vectors in the cylindrical coordinate 
system ; 
gravitational acceleration ; 

Nusselt number, -In R rE ; 
c ) 2r 

1 = 

denotes dimensional variables. 

average Nusselt number, - 
1’ 

Nudd; 
n 0 

pressure ; 
Prandtl number ; 
radial and angular cylindrical coordinates; 
radius ratio, rari; 
Rayleigh number, g’B;ri3(Ti - Tb)2/~‘ct’; 

Rayleigh number based on the gap width, 

s’B;(rb - 1.1)~ (T; - To)*/v’cr’; 

nth Rayleigh number ; 
temperature ; 
velocity components in the r and 4 direc- 
tions, respectively ; 
total velocity. 

Greek symbols 
thermal diffusivity ; 
volumetric coefficient of expansion, equa- 
tion (1); 
inversion factor, B;/B; (Ti - TL); 

coefficient in the expansion of the average - 

B~JOYANCY induced flows of cold water are a very 
common occurrence in nature and technology. The 
mechanism of such flows is considerably complicated 
by the fact that the density of water reaches a maximum 
value at about 4°C. Since the pioneering works of Ede 
[l] and Merk [2], the problem ofnatural convection of 
cold water has received increasing interest not only 
because of the fundamental importance of the density 
inversion phenomenon, but also because of its various 
practical applications. For instance, Desai and Forbes 
[3], Watson [4], and Robillard and Vasscur [5] have 
investigated numerically the problem of a rectangular 
cavity with isothermal vertical walls and insulated 
horizontal ones, and found that the resulting flow as 
well as the heat transfer can significantly differ from 
that of a common fluid with a linear density-tem- 
perature relationship. For example, instead of the 
familiar unicellular pattern, the flow in cold water can 
become bicellular, and the average Nusselt number 
goes through a minimum value when the two con- 
vective cells are of approximately the same size. These 
results have been confirmed in the experiments of Seki 
et al. [6]. Also, the transient behaviour of a mass of 
water cooled down under various thermal boundary 
conditions through the point of maximum density has 
been investigated numerically by Forbes and Cooper 
[7], Vasseur and Robillard [S], and Robillard and 
Vasseur [9] for the case of a rectangular cavity, and by 
Cheng et al. [lo, 111, and Gilpin [ 121 for a horizontal 
circular pipe. All these studies have shown that the flow 
can be greatly influenced by the presence of a maxi- 
mum density which will eventually reverse the initial 
circulation inside the cavity, and considerably reduces 

Nusselt number, (Nu - 1)/R&; 
kinematic viscosity ; 
density ; 
stream function. 

Subscripts 

1, inner cylinder; 
0, outer cylinder ; 
r, reference state. 

INTRODUCTION 

15.59 



1560 T. Hr NG NGUWN, I?. VAsst UR and L. ROBILLARD 

the heat transfer compared with the case of a common 
fluid. 

In this paper, an analytical study is made of the 
convection of cold water contained between two 
horizontal concentric cylinders with constant surface 
temperatures. The purpose of this study is twofold. The 

first is to obtain an analytical solution using the 
regular perturbation method. This solution, within its 

range of validity, has the advantage of providing an 
exhaustive view of the inversion phenomenon, and of 
predicting the trend of its evolution as the various 
parameters of the problem change. Although a 
numerical approach might be more practical, a syste- 
matic analysis of this problem would, however, require 
a considerable investment in cost and time due to the 

fact that, as will be discussed later, at least one 
additional parameter is involved in the description of a 

fluid characterized by a nonlinear equation of state. 
The second purpose of this study is to present an 
analytical solution which can readily be used as a basis 
for future numerical studies of flow regimes lying 
beyond the range of validity of this theory. Also, it 
should be noted that our interest in this problem has 

stemmed from the experimental work of !Seki et al. [13] 
who investigated the flow patterns and heat transfer of 
cold water between two cylinders with a radius ratio 

varying from 1.18 to 6.39, and a temperature of the 
outer cylinder varying from 1 to 15°C the inner 

cylinder being kept at 0°C. To our knowledge, no 
analytical study has been made of this problem 
although the convection of an ordinary fluid in a 
horizontal cylindrical annulus has been extensively 

investigated by many authors [14--201; a compre- 

hensive bibliography can be found in the paper by 
Kuehn and Goldstein [21]. 

BASIC EQUATIONS 

The problem under consideration is that of 2-dim. 
steady laminar convection in a cylindrical annulus. 

Fro. 1. Flow geometry and coordinate system. 

The geometry of the problem is shown in Fig. 1. The 
gap between the cylinders is filled with a viscous fluid 
which is set in motion by the temperature difference 

across the annulus. The inner and outer cylinders, of 
radii ri and rb, are maintained at temperatures Ti and 
Tb, respectively. All fluid properties, except the specific 
weight, are taken to be constant and are evaluated at 

the mean temperature T’ = (Ti + Tb)j2. A discussion 
on this approximation can be found in the paper by 
Mack and Bishop [18]. To determine the buoyancy 
force, the following equation of state will be used : 

p’ = p; 
r 

1 - i jL(T’ - T:) 1 (1) ,I = 1 
where p’ and T’ are the density and temperature of the 
fluid, &s are the expansion coefficients, and the 
subscript r designates a reference state. 

It should be noted that the above equation of state is 
quite general and can be applied, in principle, to a large 
variety of fluids by appropriately choosing the values 
of n, the degree of the polynomial, and pn, the 
corresponding expansion coefficients. For example, in 
the case of an ordinary fluid with a linear 
density-temperature relationship, n = 1 and the value 
of pi is a characteristic constant of the fluid under 
consideration. On the other hand, water at low 

temperature is characterized not only by the fact that 
the relationship between its density and temperature is 
nonlinear, but essentially because it presents a 

maximum density at 3.98”C. A few other fluids, Iike 
bismuth, antimony and gallium are also affected by a 
similar anomaly. The solutions developed in the 

present study can be applied to these fluids provided 
that their corresponding expansion coefficients are 
used. For the case of water at low temperature it 

should also be mentioned that various approxi- 
mations of the equation of state have been proposed in 
the past. For example, when considering the tempera- 
ture range O-20°C third and fourth degree poly- 
nomials have been used by Vanier and Tien [24], and 
Fujii [25], respectively. In this study, a second degree 
polynomial will be used, such that 

p’ = p:[l - B’,(T’ - T:) - &(T’ - T;)2] (2) 

with B; = 2(Ti - T&) &, & = 8 x lo- “C- ’ and 
TL = 3.98”C. The density given by this equation 
agrees with the experimental value to 1 part per million 

(p.p.m.) in the temperature range 226’C, and to 
5 p.p.m. in the range 0-2°C and 668°C. The buoyancy 
force is thus determined with an accuracy better than 
4% over the range O-8°C [22, 231. 

Although the use of the above equation of state has 
the disadvantage of limiting its validity to the range of 
approximately 0-8°C this is largely compensated by 
the fact that one can predict all the essential features 
associated with an inversion of density by introducing 
just one more parameter as compared with a classical 
situation of an ordinary fluid without inversion of 
density. In fact, for the general case of a fluid with a 
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nonlinear equation of state, the present problem is above system of equations must satisfy the following 

governed by four independent parameters, namely r;, conditions: 

rb, Ti and Tb (besides the Prandtl number which will be 

considered as a characteristic constant of the fluid). (Ta) 
However, by choosing a second degree equation of 

Y=$=O at r=l,R, 

state, as given by equation (2) it is found that the 
number of governing parameters is reduced to three, Y=e=O at d=O,n, (Tb) 

namely, R, Ra, = g’B;ri3 (Tf - T#dv’ and Ra, = 
84’ 

g’B; ri’( Ti - Tb)‘/cr’v’ while a fluid characterized by a T=l at r=l, @a) 

linear equation of state is governed by only two well- 
known parameters R and Ra,. Since in equation (2) 81 

T=O at r=R, (8b) 

is a function of Tb while P; is a characteristic constant ST 

of the fluid, it follows that Ra, depends on both Ti and 
- = 0 at 4 = 0, 7t. 
84 

(8~) 

Tb while Ra, depends only on the temperature 
difference (Tj - Tb) as in the case of the Rayleigh 

In the following section, the nonlinear system (S))(6) 

number for an ordinary fluid. This suggests that one 
will be solved for small values of the Rayleigh number 

should choose Ru, as the appropriate Rayleigh num- 
using the perturbation method. 

ber, and define a nonlinear Rayleigh number PERTURBATION SOLUTIONS 

Ra = Ra, (3) The series solutions 

together with a second parameter For small values of the Rayleigh number Ra, one can 

express the solutions of the system of equations (5) and 

Ral -2(T:, - T;) 

?=Ra,= 
(4) 

(6) in the form of power series of Ra, such that 

Tf - Tb ’ 
T = i Ram-IT,, (9) 

This parameter y, hereafter called the inversion WI=, 

parameter, relates the temperature for maximum den- 
sity Tk to the wall temperatures. (A similar para- 

Y = c Ra”T,. (10) 

meter has been used by Carey et al. [26] to study the 
fll=l 

effects of inversion on the boundary layer of cold pure By substituting equations (9) and (10) into equations 

and saline water at a vertical isothermal surface.) (5) and (6) and equating terms of the same order in Ra, 

When -2 < y < 0, Tk lies in the range of the fluid one readily obtains the following hierarchy of linear 

temperature and there exists an inversion of density inhomogeneous equations : 

within the confined fluid. The special value y = - 1 V’T, = 0, (lla) 
corresponds to the case where Tk is in the middle of 
the range of the fluid temperature, and the fluid density 
on the inner cylinder is the same as that on the outer 

V4Y’, = -COST& - sin 4: (yT, + T:), (llb) 
! ! 

one. This particular case will be referred in the present 
study as the case of ‘complete inversion’. When 1’ < - 2 
or y 3 0, no inversion will be observed and the flow i 

, (12a) 

approaches that of a common fluid when 1~1 >> 1. 

By using the above equation of state to determine -COST-&- sin45 
i?r 

the buoyancy force in the spirit of the Boussinesq 
approximation, the set of the continuity, momentum 

(12b) 

and energy equations can be transformed to the 8V2Y I 

following coupled system for the dimensionless stream %J 
function and temperature : 

(6) 

For the case of isothermal rigid boundaries, and due 
to the symmetry of the flows with respect to the vertical 
plane passing through the axis of the cylinders, the 

V4YJ= -cos&-sin4: 
i r% ! 

x(.1T,+T:+2T,T3)+& 
II I 
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N2Yl dY’, dv9, ay’, 
X __- 

Jr ?Q, TTF 

+ N2Y', ay', ?V2Y* aYY, 
ar%j--’ &#I ar i 

(13b) 

The corresponding boundary conditions are 

Y,=s=O at r=l,R, 
c:r 

(14a) 

F2Y m = 0 ym = 342 
at C#I = 0, 71, (lab) 

T, = 1 at r=l, (15a) 

T, = 0 at r = R, (15b) 

T, = 0 at r=l,R, (15c) 

2T 
2 = 0 at C#I = 0, 7~. 
84 

(15d) 

For practical purposes, the series (9) and (10) will be 
approximated by the first three terms such that 

T = T, + Ra T, + Ra2 T,, (16) 

Y = Ray’, + Ra2Y2 + Ra3Y’,. (17) 

Using the method of separation of variables, one can 
solve successively the hierarchy of equations (1 1))( 13) 
and obtain solutions of the form 

T, = 1 A,(i,j,k)rimm In rj-l cos(k - l)#, 
i.j.k 

(18) 

Y,,, = 1 B,(i,j,k)r’-“-’ In rim’sin k4 
i.j.k 

(19) 

where the summations are over indices i, j and k, and 
the coefficients A,(i, j, k) and B,(i, j, k) are, in general, 
functions of the parameters Pr, R and y. In particular, 

the first coefficients A,(i,j, k), A2(i,jr k), A3(irjr 1) and 
B,(i,j, k) are functions of R and ?/ only, i.e. to the lowest 

order in the Rayleigh number, the flow patterns and 
isotherms are independent of the Prandtl number. For 

reference purposes, these coefficients are given in the 
Appendix. Readers interested in other coefficients, 
which have been stored in a computer memory to save 

space, are invited to write to the authors. 

Validity of the series expansions 

Before discussing the results obtained from the 
above solutions, it should be noted that these expan- 
sions in power series of Ra do not converge uniformly. 
In fact, when R --t Y<, they will diverge no matter how 
small the Rayleigh number may be. For finite values of 
the radius ratio R, one can expect, but not prove, that 
the series will converge in a certain range of the 
Rayleigh number. The reliability of the truncated 
series then depends on how fast they will converge. 
Physically speaking, as these series represent a per- 
turbation of a pure conduction state, they must be 
close to the true solution when the heat transfer by 
convection is “small” compared to that due to con- 

duction : This condition can be expressed in term of the 
average Nusselt number as 

Nu < 1.25 (20) 

which implies that the second term in the expression of 

the average Nusselt number (due to convection) must 
be at least four times smaller than the first one (due to 
conduction). 

In term of the Rayleigh number, condition (20) can 

be expressed, by virtue of equation (24) as 

RUG <& (21) 

where t: is a function of R and y as determined from the 
second order temperature T, [see equation (25) 
below]. 

When condition (20) or (21) is satisfied, one can 
reasonably expect that the truncated series (16) and 

(17) will represent the true solution to within several 
percent. 

The family of curves in Fig. 2 shows the limiting 

value of Ra, below which the series solutions are 

reliable. It should be noted that all these curves 

correspond to a same Nusselt number Nu = 1.25, and 
therefore indicate the required Rayleigh number to 
achieve a same degree of convection for various values 
of R and y. 

RESULTS AND DISCUSSION 

The series expansions (16) and (17) have been 

evaluated numerically for various combinations of the 
dimensionless parameters, R, Ra and 7. It was found 
necessary to perform the numerical calculations with 
double precision as has been pointed out by Mack and 
Bishop [18]. To expedite plotting of the results, an 
auxiliary computer program was used to locate points 
lying on specified isotherms and streamlines. Due to 

the symmetry of the geometry of this problem, it was 
found convenient to represent the computer results on 
a single graph with the flow pattern on the right half of 
the cavity and the isotherms on the left half. Note that 
in all these graphs, the increments between adjacent 
isotherms and streamlines are respectively AT = (Ti 

- T,)/S = 0.2 and AY = (I’J”,,,I + l‘yminIM5, Y,,,,, 
and Y,,,;, being the values of the stream functions at the 
centers of the clockwise and counterclockwise vortices, 
respectively. 

&ff&ts of inversion 

For fixed values of R and Ra, the inversion phenom- 
enon is governed by the parameter y which relates 
the position of the maximum of density to the walls of 
the cavity. The value of y can be varied by changing 
both Tb and T; such that Ti - Tb remains constant. As 
mentioned earlier, the particular value y = - 1 
corresponds to the case of complete inversion with a 
zero density difference between the two cylinders, and 
a mean temperature (Ti + To)/2 equal to the tempera- 
ture at maximum density. Typical results for various 
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FIG. 2. Maximum Rayleigh number for the validity of the 
truncated series solutions. 

FIG. 3(a). Streamlines and isothermals for Ra = 2000, R = 2 
and 1’ = 0 and Y,,,,, = 4.6. 

FIG. 3(b). Streamlines and isothermals for Ra = 2000, R = 2 
and y = -1, Yy,,, = -0.045 and Ymi, = -0.71. 

FIG. 3(c). Streamlines and isothermals for Ra = 2000, R = 2 
and y = -2 and Y’,i, = -4.8. 

values of y, with R = 2 and Ra = 2000, are presented in 
Figs. 3(a))(c) and 4(a) and (b). Figure 3(a) shows the 
flow and isotherm patterns when the maximum of 
density is situated at the outer cylinder, corresponding 
to y = 0. The flow then consists of two symmetrical 
(with respect to the vertical axis) counterrotating 
vortices with a downward motion near the outer 
cylinder. One notes that the flow pattern is of a tadpole 
shape lying in the upper part of the annulus where the 
fluid motion is the strongest. The maximum heat 
transfer, occurs, however, both at the top of the outer 
cylinder and at the bottom of the inner one. Since there 
is no density inversion in this case, the flow is similar to 
that observed in an ordinary fluid [14-211. 

The case of complete inversion, with y = - 1, is 
shown in Fig. 3(b) where the heavy dashed line 
represents the 4°C isotherm corresponding to the 
region of maximum density. In the neighborhood of 
this region, the fluid moves downward while near both 
the inner and outer cylinders, its upward motion 
results in the appearance of two counterrotating 
vortices in each half of the cavity. This effect of 
inversion is responsible for the sharp cut of the heat 
transfer rate as indicated by the almost concentric 
isotherms (Fig. 3b) in comparison with the rather 
distorted pattern of the previous case (Fig. 3a). As far 
as the heat transfer mechanism is concerned, the 
complete inversion case is thus characterized by a 
pseudo-conduction regime as defined by Grigull and 
Hauf [27]. 

Figure 3(c) shows th< flow and isotherm patterns 
when the maximum density is situated at the inner 
cylinder, corresponding to y = -2. In this case, the 
fluid motion as well as the isotherm patterns are 
opposite to that observed in Fig. 3(a). Here, it is 
interesting to remark that although the convection is 
still weak, one can already see the development of two 
thermal boundary layers at the inner and outer 
cylinders, respectively. To illustrate the effects of 
inversion on the relative intensity and direction of the 
convective motion, the angular velocity is represented 
in Fig. 4(a) for the three typical values of y considered 
above while more detailed flow field in the case of 
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FIG. 3(d). Streamlines and isothermals for Ra = 8000, R = 2 FIG. 3(f). Streamlines and isothermals for Ru = 8000, R = 

and y= -1, Y,,,= 1.1 and Ymi,= -2.7. 1.2 and y = -1, Y,,, = 0.0087 and Y,,,, = -0.013. 

FIG. 3(e). Streamlines and isothermals for Ra = 8000, R = 2 FIG. 3(g). Streamlines and isothermals for Ru = 8000, R = 
and 7 = -0.857, Y’,,, = 1.5 and Y,,,, = -1.4. 2.6 and ;’ = 0.857, ‘I’,,,,,, = 3.2 and Y = “,,,, -6.7. 

(4 (b) 

” 

FIG. 4(a). Angular velocity profiles at 4 = 90” for Ra = 8000, R = 2 with y as a parameter. 

FIG. 4(b). Angular velocity profiles for Ru = 8000, R = 2 and ;’ = - I at various angular positions 
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complete inversion is iflustrated in Fig. 4(b) by the 
angular velocity at various positions within the 
annulus. 

kI&ts of the Rayfeigh number and the radilrs ratio 

Effects of the Rayleigh number on the inversion 
phenomenon are shown in Figs. 3(b) and 3(d), cor- 
responding respectively to Ra = 2000 and 8000 From 
these figures one can see that by increasing the 
Rayleigh number, the inner cetl is pushed down while 
the outer one moves up and gradually changes from 
the well-known kidney shape to that ofa tadpole. Also, 
the convection is enhanced in such a way that the 
isotherms are squeezed to the top of the inner cylinder, 
and to the bottom of the outer one. 

EfSects of the radius ratio on the inversion phenom- 
enon can be seen from Figs. 3(d) and (f) or Figs. 3(e) 
and (g) which show that for smallvalues of R (i.e. R - 1 
< 1) the two counterrotating cells fin the case of 
complete inversion) are approximately of the same size 
and of the classical crescent eddy type. As R is 
increased, the flow and isotherm patterns change 
qualitatively in a same way as with an increasing 
Rayleigh number. When no inversion of density is 
present in the cavity, it is found that for y 3 0 the 
unicellular flow, corresponding to the inner cell in the 
previous case, moves up as R (or Ra) is increased while 
the isotherms get closer to each other at the top of the 
outer cylinder and at the bottom of the inner one. A 
completely reverse situation is observed when y < - 2. 
These observations are in agreement with past litera- 
ture on the convection of ordinary fluids [213. 

Heat transfer rates 

The local heat transfer rates at the inner and outer 
cylinders can be expressed in terms of the correspond- 
ing local Nusselt numbers lvui and Nu, defined by 

S\TU~.~ = -in R rT 
I- 1 a- r=t.a WI 

with T = ‘I!‘, + RUT, + Rat T, as calculated in the 
previous section. 

A study of the local Nusselt numbers readily shows 
that the maximum (as well as the minimum) heat 
transfer rates are localized around the vertical axis of 
the annulus (i.e. at 4 = 0 and rr) as previously observed 
from the isotherm patterns. 

While the local Nusselt numbers indicate the distri- 
bu tion of the heat Bow across a given surface, the total 
heat flow across that surface is given by the overall (or 
average) Nusselt number as defined by 

- c 
,yuL 

n 
Nai.0 d+ 123) 

x 0 

(where, by virtue of the balance of energy, the in- 
tegration over the inner and outer surfaces must be the 
same). 

Expressions for Nu can be shown to have the form 

Nu = 1 + &a& (24) 

where Ra, is the Rayleigh number based on the gap 
width, and 

i; = -(R - l)+ ln R c A, (i, 2, 1). (251 
i 

Here, it should be noted that I: is a function of R and y 
only, and therefore, to the lowest order in the Rayleigh 
number, the overall heat transfer rate is independent of 
the Prandtl number. 

Within its range of validity, equation (24) explicitly 
shows that the overall Nusselt number is made up of 
two terms, the first of which represents the heat 
transfer due to pure conduction while the second one 
arises from the heat transfer by convection. The family 
of curves in Fig. 5 describes the effects of density 
inversion, for various values of R, on the overall 

convective heat transfer coefficient 1: = (E - 1 )/Ra& 
All these curves present a very sharp minimum in the 
neighborhood of the value y = - 1, thereby indicating 
a sharp cut of the heat transfer rate due to the complete 
inversion of the fluid density. For example, the mini- 
mum value of E at y ‘v - 1 is about i03 times smaller 
than its value at y = -2 (i.e. in the absence of 
Inversion). This implies that for a given difference of 
temperature AT’ = T; - ‘I’: across the annulus, the 
heat transfer due to convection can be reduced by a 
factor of 10’ by changing the temperature of the inner 
cylinder from, say, T; = T:, to Ti 1: T6 -i- iAT’. This 
sharp cut is essentially due to the presence of two 
counterrotat~ng vortices that arise from the inversion 
of the fluid density, and is one of its most significant 
effects on the mechanism of heat transfer by convection 
within an enclosure. Finally, it should be noted that the 
family of curves in Fig. 5 is universal, and can be used to 
determine the overall heat transfer rate of any fluid as 
specified by a set of parameters R, 7 and Ra. 

Camparison with existing results 

Although no analytical study has been made of the 
present problem, many results have been pubhshed for 
the case of ordinary fluids with a linear equation of 
state. For instance, Mack and Bishop [18], on the 
basis of the perturbation method, have studied the case 
of ordinary gases (Pr = 0.7) as well as that of liquid 
metals (Pr = 0.02). All their results can be reproduced 
from the present solutions by letting 1~1 + X, and 
keeping y Ra fixed. Also, Custer and Shaughnessy [19] 
have studied the convection of liquid metals by using 
double regular expansions in powers of the Rayleigh 
and Prandtl numbers. Both constant temperatures 
and constant heat Rux were imposed an the boun- 
daries. Again, their results for the case of constant wall 
temperatures can be readily obtained from the present 
solutions by letting Pr + 0, [y I+ x, and keeping? Ra 
fixed. Finally, we have reproduced the results for some 
of the cases studied by Crawford and Lemlich [ 141 (R 
= 8,Ra, = 9,Pr = 0.714), Poweetal. [l5] (R = 1.57, 
Ral = 13 348, Pr = 0.7 and R = 1.2; Ra, = 345920, 
Pr = 0.7) and Kuehn and Goldstein [21] (R = 1.2, 
Ra, = 104,Pr = 0.7; R = 2.6,Ra, = 1000, Pr = 0.7). 
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FIG 5. Coefficient of convective heat transfer, E = (E - l)/Ra& as a function of y and R. 

The current analysis predicted essentially identical 
results for the isotherms, flow patterns and, to within a 
few percent, the average Nusselt number. 

In the case of a fluid with inversion of density, 
numerical and experimental studies of the present 
problem have been obtained by Seki et al. [13,28], and 
by Vasseur et al. [29]. While the numerical solutions in 
the latter study agree satisfactorily with ours, the 

results published by Seki et al. [13,28] correspond to 
Rayleigh numbers lying generally beyond the range of 
validity of the present theory and cannot be compared 
directly with our results. However, it is more signi- 
ficant to note that the essential features associated with 
the inversion phenomenon as described in the previous 
section are consistent with the experimental obser- 

vations, and, therefore, can be used to predict the trend 
of the flow patterns and heat transfer for convective 
regimes lying beyond the range of validity of this 
theory. 

CONCLUSIONS 

The solution to the problem ofnatural convection of 
cold water contained in a horizontal annulus has been 
obtained by the regular perturbation method. The 
density-temperature curve of water around 4°C has 
been approximated by a parabola to describe the 
phenomenon of density inversion. The problem then 
was shown to depend on three dimensionless para- 
meters R, Ra and y, representing the radius ratio, the 
nonlinear Rayleigh number, and the inversion para- 
meter, respectively. An analysis of the flow patterns 
and heat transfer rates showed that: 

(1) For 1 y ) a 1 the present problem tends to that of 
an ordinary fluid with a linear equation of state, and all 
the well-known results can be obtained from the 

present solutions by taking the limit IyI + z and 

keeping 7 Ra fixed and equal to the classical linear 
Rayleigh number. 

(2) For - 2 <y < 0, the maximum density 
temperature T:, = 4°C is situated between the cylinder 
temperatures and there exists an inversion of density 
within the confined fluid. In the limit case y = - 2 (i.e. 
Ti = 4°C) a unicellular counterclockwise flow is 
present inside the cavity and the maximum heat 
transfer occurs at the top of the inner cylinder and at 
the bottom of the outer one. In the other limit case y = 
0 the situation is completely reversed. For - 2 < y c 0 
the flow pattern consists of two counterrotating cells in 
each half of the annulus, the inner cell being always 
clockwise and the outer one always counterclockwise. 
For - 2 < y < - 1 the dominant cell is the outer one 
and moves from the lower part of the annulus to the 
upper part as 1’ is increased. For - 1 < y < 0 the 
dominant cell is the inner one and its center also moves 
up as y tends towards zero. The presence of two 
counterrotating cells inside the cavity is essentially due 
to the inversion of the fluid density which can 
effectively cut the heat transfer down to the level of 
almost pure conduction such that, as y approaches - 1 
from either 0 or - 2, the isotherms become more and 
more concentric circles. This was clearly shown by the 
presence of a very sharp minimum of the curve 
representing the overall Nusselt number in term of the 
inversion parameter. 

(3) The effects of increasing the Rayleigh number 
and/or the radius ratio on the inversion phenomenon 
is twofold. First, the convection inside the cavity is 
enhanced with a flow pattern gradually changing from 

a crescent shape to that of a tadpole, by passing 
through the well-known kidney shape. Second, the 



Natural convection between horizontal concentric cylinders 1567 

inner cell is pushed down while the outer one moves 
up, tending to separate the flow into two thermal 
boundary layers. 

(4) Finally, a comparison with the existing numeri- 
cal and experimental results shows that, within its 
range of validity, the present theory faithfully predicts 
the essential features associated with the inversion of 
density, and can serve as a basis for future studies of 
this phenomenon at higher Rayleigh numbers. 
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APPENDIX 

The coefficients A,(i,j, k), A,(i,j, k) and B,(i,j, k) appearing 
in equations (18) and (19) are functions of the radius ratio R 
and the inversion parameter y as given in the following 
expressions (only non-zero coefficients will be written): 

A,(l, 1,1) = a,, A1(1,2,1) = a,, 

A,(L 132) = a3, AL3,L 2) = a4, 

A,(5,1,2) = as, A,(1,2,2) = ~6, 

A,(3,2,2) = a,, A~(5~2.2) = a,, 

&(3,3,2) = a,, Az(5,3,2) = a,,, 

B,(l, 191) = b,, 8,(3,&l) = bz. 

B,(5, 1, 1) = b,, B,(3,2,1) = bq, 

8,(5,2,1) = b,, B1(5,3,1) = b,, 
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where In-’ R 

In2 R 
a, = __ b,, 

4 

16 ’ In-’ R a,=-b,_31n-‘R b 
In-’ R 3ln~‘R 8 16 h’ 

b, = - 16(2-ln-‘R+y)+32, 
In-’ R 

a,=_b2-!!!?! 4, b 
- R’+ZR’lnR+(-l+R”+2RzlnR) -i 

1 a6 = -+b,, 

4 

(1 - R’)’ (1 + 2R2 - 3R4) 

(- 1 + R2 - 2R4 In R)b, - (2R4 In* R)b, 

(1 - R2)* In’ R 
a5=_b,-31n-‘R 

b +7K’R T5 - 

+ (I+ R2 - 2R4 - 6R4 In R)b, - (4R4 In R + 6R4 In2 R)b, 

(l+2R2-3R4) 1 
8 64 

‘a4 = - (R’ - 1))’ i(R4 - l)a, 

b 6, 

b, = - $(l - R*)-‘[(l - R* + 2Rz1n R)b, 

+ (1 - R2 + 2R4 In R)bs + (2R“ ln’ R)b,], 

b, = - $(4b, + b, + b,), 

b, = - b2 - b,, 

and 

+ (q, + a,R2 + a,R4)ln R + (a,R’ + a,,R4)lnZR], 

as= -a4-as, 

a2 = -1C’ R, 

u, = 1 

In-’ R 
u b ,o=-- b> 

8 

CONVECTION NATURELLE ENTRE DES CYLINDRES CONCENTRIQUES HORIZONTAUX 
AVEC INVERSION DE DENSITE DE L’EAU A DES FAIBLES NOMBRES DE RAYLEIGH 

Rtkum&On &die la convection naturelle de l’eau froide entre deux cylindres horizontaux et concentriques 
avec des temperatures de surface constantes. Les equations de base sont resolues par la mtthode de 
perturbation et les solutions sont exprim&zs en serie puissance du nombre de Rayleigh non-liniaire. Les 
configurations de l’ecoulement et les flux thermiques sont preset& en fonction du rapport des rayons R, du 
nombre de Rayleigh non-liniaire Ra, et le paramdtre d’inversion y qui determinent essentiellement la taille et 
les effets des cellules de convection qui apparaissent dans la cavite a partir de l’inversion de densite de l’eau a 

4°C. Un bon accord est obtenu avec les resultats numtriques et experimentaux existants. 

FREIE KONVEKTION ZWISCHEN HORIZONTALEN KONZENTRISCHEN ZYLINDERN 
MIT DICHTE-INVERSION VON WASSER BE1 KLEINEN RAYLEIGH-ZAHLEN 

Zusammenfassung-Die freie Konvektion von kaltem Wasser zwischen zwei horizontalen konzentrischen 
Zylindern mit konstanter Obertllchentemperatur wird untersucht. Die wesentlichen Gleichungen werden 
mit Hilfe eines Storungsansatzes gelost. Die Liisungen werden als Potenzreihe der nichtlinearen Rayleigh- 
Zahl ausgedriickt. Die Stromungsform und der Warmeiibergang werden durch das Radien-Verhaltnis R und 
den Inversionsparameter y dargestellt. Dieser bestimmt im wesentlichen Grol3e und EinfluB der zusatzlichen 
Konvektions-Zellen, die durch die Dichte-Inversion von Wasser bei 4°C in dem Hohlraum entstehen. Es zeigt 

sich eine gute Ubereinstimmung mit bestehenden numerischen und experimentellen Ergebnissen. 

ECTECTBEHHAS KOHBEKHMIf MEXAY l-OPM30HTAJIbHbIMH 
KOHHEHTPMYECKMMM HMJIMHAPAMM C MHBEPCMEH IIJIOTHOCTM BOAbI 

IIPM MAJIbIX 3HA’IEHMRX rIMCJIA PEJIEIl 

.hlOTaUH~--npOBWHO RCCneAOBaHHe eCTeCTBeHHOii KOHBeKuHB B CJtOe XOnOnHOi? BOnbI Memny 

nByMnrOpu30HTanbHblMu KOHUeHTP1(SeCKBMHUWSIRH~lpPMII,“OBePXHOCTb KOTOpblX BMceTnO~ONHHyH, 

TeMuepaTypy.O~~JIensKWHeypaBHeHEiR~LlIalOTCsM~TO~OM B03MyIWHkfi?,A pcIJIeHtrs ablpaX(aloTCK 

B BHLW CTeneHHblX psnOB HenHHefiHOrO YRCna PenC.R. CTpyKTypa TeVeHMII N UHTcHCllBHOCTb 

rennonepenoca 3amicm OT oTHowems panaycos R, HenaHeiiHoro wcna Pener Ra A napaMeTpa 

msepcae y, Koropbrfi onpenenaer passrep A Bnmwe .4ononmTenbHb~x KomeKTmHbIx meeK, 

BO3HHKaH)llIEfX MJ-3a HHBepCHa nnOTHOCTII BOJlbI up&i 4°C a 3a3Ope M'SKny L,liJIHH&,aMH. nOJyVeH0 

XOpOluCC COrnaCHeC RMWO”WMUC,l WC."eHHblMII A SKCnepRMeHTanbHbIMH pe3ynbTaTaMH. 


